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Abstract. We consider the spherical model for a one-component spin glass in the mean- 
field limit. Using the replica method we can solve the model exactly, allowing explicitly 
for replica symmetry breaking. The solution is replica symmetric and marginally stable. 
However, perturbations around the spherical model, in particular the introduction of an 
on-site Ising-like spin length probability, destabilise the replica symmetric solution and give 
rise to a new solution. The mass of the fluctuations destroying replica symmetry is shown 
to depend on the fourth cumulant of the spin length distribution for a given site. 

1. Introduction 

The infinite-range spherical model for spin glasses, like the corresponding Ising model 
[l], possesses a saddlepoint solution which is exact in the thermodynamic limit. The 
model, furthermore, can be solved without replicas, and was the toy model introduced 
by Kosterlitz et a1 [2] to show that the replica trick could indeed reproduce the correct 
free energy and critical behaviour. We therefore consider the spherical model as a 
good starting point from which to treat the problem of replica symmetry breaking, 
and the origins of the destabilisation of the replica symmetric solution. We begin 
by formulating the model in the most general terms possible, within the context of 
the replica method, and show that this results in the replica symmetric solution. To 
understand the effect of perturbations, however, the model is specialised to looking 
at a particular class of solutions given by the the Parisi parametrisation [3] which 
is introduced here once again, as in the well known SK model, essentially by fiat. 
Doing this enables us to take the replica limit in a well regulated way, allowing for 
a generalisation of the original solution, and making it possible to understand the 
effect of perturbations around the starting model. The completion of the programme 
in terms of a full analysis that does not involve this parametrisation remains for the 
future. Here we will find, upon making this ansatz, that the passage from the spherical 
to the Ising limit by way of limiting on-site spin fluctuations results in destabilisation 
of the original solution. The replicon modes are identified and their masses are seen to 
be proportional to the fourth cumulant of the spin length distribution. 

Finally, we re-express the effective theory in terms of a new function, which greatly 
facilitates the calculation of the equation of state. This function can be related to 
the probability distribution P ( Q )  that was introduced by Parisi [4] in a replica-free 
description of the statistical mechanics of spin glasses. 

Sections 2-4 present the model and its solution. The fifth section discusses the 
passage to the Ising limit. In the sixth section, an alternative formulation is presented 
for the saddlepoint calculation. 
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2. The spherical model 

The spherical model for N one-component spins {Si, i = 1, N} is given by the Hamilto- 
nian 

1 
2 

H = - J i jS ,S j  
& j  

with the spin lengths satisfying the constraint 

N 

I S :  = N 
r=l 

and the exchange couplings { J I J }  are taken from a Gaussian distribution. For all pairs 
of spins in the system 

P [ J i j ]  = ( y )  -112 exp( 15:). -N J ;  
(3) 

If the system is self-averaging, properties such as the equation of state can be computed 
from the average of its free energy over all realisations of the random couplings 
{J, , ) .  This is done by the replica trick [ 5 ]  which relies on the use of the identity 
-DF, = lnZJ = lim,,,[Z," - l]/n . The partition function for a given set of {J,,} is 
Z ,  = Tr exp(-P JIJS ,SJ) .  Introducing replicas, and performing an average over the 
random couplings results in an effective four spin interaction that couples spins in 
different replicas. This term is decoupled using the standard Hubbard-Stratonovich 
transformation along with the introduction of the fields { Q z B } ,  leading to an effective 
theory after random averaging given by 

(terms with r = 8 are to be excluded from the primed sum). 
In the thermodynamic limit, taking the number of sites N to infinity, the saddlepoint 

solution for Q Z B  is exact and relates QTp to the spin overlap between replicas, Qora = 

Using an integral representation of the spherical constraint in (2), it can be seen 
that the spin traces on the different sites can be decoupled. The resulting Gaussian 
integrals over the vectors { S , ,  2 = 1, n }  thus give 

P J / N  E(S,%SI{d (g # 8). 

= J DQz,j J Dzx ex~(-Le, [Q, zl) ( 5 )  

where 

The {z,} are the Lagrange multiplier fields corresponding to n constraints over the 
replicas. The trace in (6) refers to the space of replicas. Equation (6) is the effective 
theory for the spherical model that we now wish to study. 
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3. The replica symmetric solution 

As a preliminary to the more general treatment that we will later introduce, we present 
the replica symmetric solution for the mean-field spherical model introduced in the 
previous section. This was done originally by Kosterlitz et a1 [2], who solved the 
model with and without the introduction of the replica trick, and showed that the free 
energy computed by both methods was the same, thereby validating the use of the 
replica technique in this particular instance. The replica symmetric solution proceeds 
as follows. 

The assumption of replica symmetry allows us to solve for a saddlepoint at which 
QZP = Q = P J 4  V(a ,p )  and z ,  = z independent of the replica indices. Substituting 
these into (5) and taking the limit n -+ 0 yields the averaged free energy per spin (as 
N -+ x) 

(7) 
ln(2z + P J Q )  ln2n 1 PJQ P 2 J 2  +- 4 -  4- Q 2  - / ? f = - + z -  

2 2 2 2 z + P J Q  4 4 

where the saddlepoint solutions for Q and z (valid for N -+ z) are 

( T ,  = J). Using the saddlepoint values in the expression for the free energy we find 

We now discuss the model in more general terms, keeping this preliminary solution in 
mind in what follows. 

4. Solution in terms of eigenvalues; the Parisi parametrisation 

Returning to the full partition function in ( 5 ) ,  i t  is evident that the effective action 
Le, can be written entirely in terms of invariants of Qzp under rotations in replica 
space. This follows from the expansion of the Tr In term in powers of Q. We can 
therefore express the path integral over QZB alternatively as an integral over the set 
of eigenvalues of Q-matrices (which we know to exist, the QIB being real symmetric 
matrices by construction). The elements of QZB, being conjugate to the spin overlaps, 
are Gaussian distributed random variables (by the central limit theorem , as N + a), 
In terms of the eigenvalues 

The last term arises from the Jacobian of the transformation. For the case of an 
orthogonal ensemble, this is given by IIJII = rIz& - iBl [7] . Here, by virtue of 
the factor 1,” appearing in front, we shall drop this term in our calculation of the 
saddlepoint (recall n is finite at this stage). After extremisation, the limit n -+ 0 is to be 
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taken. In order to do this we find it  necessary to introduce a specific parametrisation 
of the matrices QZ8 that will allow for the taking of this limit in a well defined 
manner. The saddlepoint calculation of the previous section was evidently a very 
restricted one because of the assumption of replica symmetry. While the solution thus 
obtained appears to be the correct one for the spherical model, we are motivated by 
the knowledge that it is not correct in the case of the Ising spin glass to try to enlarge 
the space of allowed solutions. We would like, in an ideal world, to solve the problem 
without making any assumptions as to the dependence on the replica index. However 
this is difficult to do in complete generality, and so we have resorted here to looking 
for solutions that satisfy a rather special property-that of ultrametricity [6 ] .  Although 
the spherical model might not itself possess an ultrametric saddlepoint solution, the 
simple solution of the last section will be shown to be marginally stable with respect 
to fluctuations of the generalised order parameter Q(x) and hence possibly vulnerable 
to perturbations. 

The replica symmetry breaking scheme devised by Parisi provides one way of 
parametrising an n x n real symmetric matrix in the limit that n goes to zero. The 
scheme has been described in the litirature (see for example [SI), and involves a 
heirarchical construction of the matrix elements of Q described in the n .+ 0 limit by 
a function of a single variable Q(x), with x E [0,1]. The eigenvalues of the symmetric 
matrix thus parametrised can be written down in terms of the function Q(x). The trace 
of arbitrary powers of Q, Tr Qk = is given by the general formula 

I 

= ( l1 dx Q(x))' - n l1 dx f (l ds Q(s) + x Q(x) 

to lowest order in n. This allows us to express the effective action entirely in terms of 
Q(x), and the result for the free energy is 

This can be simplified, by partial integration and summing terms, to the form 

PJQ(0) p 2 J ?  In 271 ln(2z + P J Q (  1) )  1 
-Pf = ext{ - + z  + - - + J11 dx Q2(x) - 

4 2 2 2[2z + P J  !: W)I 
I 

- dx Q'(x) p J  } + 0(1/N) .  
22 + PJ [!.: Q + xQ1 

The expression inside the braces can now be extremised by differentiation with respect 
to Q(x) and z. After repeated differentiations, the extrema1 solution for Q(x) is found 
to satisfy 

Q'(x) = 0 (14) 
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i.e., Q(x) = constant is the only possible solution. One recovers the results for the 
saddlepoint of the previous section. The solution as formulated here corresponds to 
a family of stable solutions QZa that transform into each other under rotations in the 
space of replicas. We note that the physically relevant solution must be off-diagonal 
and symmetric due to the saddlepoint relationship between QZB and the spin overlaps. 

5. Replica symmetry breaking perturbations. Stability under Gaussian fluctuations and 
approach to the king model 

We now address the question of how replica symmetry might be broken in this and 
related models for the spin glass. Going back to the effective theory in terms of Q and 
z given by (12), it is straightforward to expand in powers of Q, which appears to all 
orders in Ler. We may now consider the effect of adding small perturbations to the 
effective action, in order to investigate the stability of the replica symmetric solution, 
and the origin of replica symmetry breaking in the related Ising spin glass. 

Consider the free energy of (12) close to T,. Keeping the first few terms in the 
expansion in powers of Q(x) we will show the corresponding extrema1 solution for 
this function to be replica symmetric . This is true, of course, to all orders in Q(x), 
being the exact solution found in the last section. To this truncated free energy now, 
however, we may consider the effect of adding perturbing terms, with the intent of 
studying the fate of the replica symmetric solution. In particular, we wish to study the 
relation of the this model to the infinite-range Ising model, which has been shown to 
admit a non-trivial solution for Q(x) [3]. We will show here that while the addition 
of any perturbing terms up to third order in the function Q(x) do not give rise to 
replica symmetry breaking, we can find perturbations of order Q4 that do give rise to 
a new replica symmetry broken solution in addition to the constant solution. Which 
of these is actually chosen must then be determined by a stability analysis with respect 
to general fluctuations in the space of functions Q(x). This is of interest because such 
quartic terms would in fact be generated if we were to start out with a different length 
distribution for the spins than that given by the spherical constraint. 

The truncated free energy up to fourth order in Q(x) for the pure spherical model 
is 

- B f = - - - + z + -  B 2 J 2  4 lnz/n 2 4 [ 1 -  (E)’] L1 

Differentiating this with respect to Q(x), as we already said in the last section, results in 
the only possible solution for Q(x) being the replica symmetric one Q = T + T*, which 
is the solution in (8) expanded close to T, (T = (Tc -  T) /T, . )  It can be checked that the 
addition of terms of linear, quadratic or cubic order results in a solution that satisfies 
Q’(x)=O. The quartic perturbations do result in an additional type of extremising 
solution. There are several types of terms one can have at this order. One relatively 
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innocuous term is TrQ4, which does not result in a new solution. Other terms such as 
Q$Q:., and CQ;, can be seen to result in an additional saddlepoint solution. If 

we add the term U 1 Q28 to ( 1  5), the extrema1 solution satisfies the equations: Q’(x) = 0 
or 

(8u + x2)Q”(x) + 3xQ’(x) = 0. (16) 

The latter has the solution Q(x) = c l x / d m  + c2 where the constants can be 
determined by the set of saddlepoint equations, as well as the region in the interval in 
which Q(x) is non-constant. The solution is 

where x ,  = 24ur. Comparison with the solution of the SK model of Thouless et a/ [9] 
shows them to be very similar. It is not yet established whether this is a stable solution. 
To do this we must take the functional derivative of (15) twice. In the absence of the 
quartic perturbation uQ4, the second derivative is 

where we have used the replica symmetric saddlepoint solution to simplify the second 
derivative (see the appendix). This says that the solution is (marginally) stable, the 
eigenvalues of the fluctuations-matrix being positive. When the quartic term is present, 
however, the second derivative can be shown to result in (keeping terms up to r 2 )  

I 
d2(-Pf) = -12ur2 [dQ(x)]‘+ ___ (‘ + T 2 ) ( L 1 d Q ( x ) ) 2 .  2 

Clearly there exist fluctuations such that the first term, although of higher order in T ,  

is greater than the second term. If U is positive, the fluctuations will destroy the replica 
symmetric solution. 

As remarked already, the way we choose to modify the model in order to generate 
additional terms in the expansion (15) is in the choice of the spin length distribution. 
For the spherical model, (4) can be rewritten 

The spin length probability distribution here is P [ S ]  = exp(-zS*). The spin 
weight is Gaussian, and is maximum around a spin length of zero, although the 
spherical constraint ensures that the spins cannot all take on zero values. Spins at 
the more frustrated sites can, however, minimise energy by taking on extremely small 
values. The frustration can be made more important if we now force the spins to prefer 
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non-zero values, More specifically, we now multiply the Gaussian weight above by a 
factor that favours S = +1 (choosing the value 1 for convenience) : 

P [SI = c exp(-zS2) exp[-a(S2 - 112] 

where a is a small parameter and C is the constant of normalisation. This modified 
spin distribution resembles the spherical model for small a (a z 2 )  while for very large 
values of a it approaches the Ising limit. The object here is to study the perturbations 
induced by very small values of a around the spherical model. Using (21) to evaluate 
the spin trace in (20), we can find the prefactors of the powers of Q x B  appearing in the 
linked cluster expansion. The single-loop diagrams result in terms of the form Tr Q k ,  
which are those appearing in the unperturbed spherical model. In addition now, there 
is a term IQ:. whose prefactor is proportional to the square of the fourth cumulant 
[3]. This prefactor, which vanishes for the Gaussian distribution, can be evaluated for 
(21) and gives an additional term in the free energy 

to lowest order in the expansion in a. It is seen that the coefficient (called U in the 
discussion above) is positive definite. For any non-zero value of the parameter a, 
therefore, the replica symmetric solution is always destabilised according to (19). 

In the case of the Ising model, we recall a similar situation existing in the field 
theory of the spin glass [lo, 1 1 1 ,  where the Ginzburg-Landau expansion contains a 
QTii term. It was noted that the origin of the destabilisation of the replica symmetric 
mean-field solution could be traced to the fact that this term occurs with a negative 
prefactor. A similar mechanism for replica symmetry breaking was shown to appear in 
the short-ranged random anisotropy model (RAM),  where the infinite-N (here N stands 
for the number of components of the spin) limit had a replica symmetric solution, but 
was shown to be unstable at finite values of N due to the appearance of a destabilising 
quartic term at order 1/N [12]. Thus the result we have obtained in the case of the 
constrained spherical model, equation (19), is in keeping with this generally observed 
(but not understood) fact. Here we have a means of tuning the frustration, so to speak, 
and therefore of changing the strength of the replica symmetry breaking instability. 

Equations (18) and (19) give the second variation of the free energy for the 
unmodified spherical model and its modified version, respectively. Writing this quantity 
as a sum over the eigenvalues of the eigenmodes of fluctuations around the saddlepoint, 
one has the result that the eigenvalue spectrum for the spherical model is 

corresponding to the uniform mode (6Q(x) = constant), and furthermore 

i. = 0 

for all the modes that satisfy Q(x) dx = 0. These latter marginal modes are the ones 
which destabilise the replica symmetric solution when the spin length distribution is 
modified as described above. 
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6. Saddlepoint in terms of A ( Q )  

Here an alternative approach is presented for the analysis of perturbations. A new and 
useful function A ( q )  can be defined, and it turns out to greatly facilitate the solution 
of the equations of state for the 'perturbed' spherical model spin glass. This function 
can also be given a meaning in the context of Parisi's explication of the generalised 
spin-glass order parameter, Q(x). I t  is defined as follows: 

where x(Q) can be found by inverting Q(x). Conversely, given the function A(Q) we 
can use (25) to find x(Q) from 

so the function A(Q) contains sufficient information to obtain the full x-dependence 
of Q(x). It will be recalled that an important step in the interpretation of Q(x), or 
its inverse function x(Q), was given by Parisi [4] in relating these to a replica-free 
quantity. In terms of a multi-phase picture, a probability P ( q )  can be defined for the 
spin overlap function between two phases to have the value q (Q = PJq) .  Then it 
was shown that P ( q )  = dx/dq. We see from (26) that P ( Q )  = d2A/dQ2. If A(Q) is 
regarded as a thermodynamic potential, this identifies P(Q) as the susceptibility, and it 
is necessarily positive for stability, as a probability distribution is expected to be. 

There is one form of Q(x) that leads to greatest difficulties, which is unfortunately 
the one of greatest relevance thus far: namely the replica symmetric form Q(x) = Qo, 
a constant. In that case, 

so F(x)  is independent of x. The dependence of x on Q is highly singular in that 
there is no solution for x when Q # Qo, and all values of x are permitted for Q = Qo. 
However, if Q(x) is monotonic and has a non-zero derivative, the function A(Q) can be 
computed straightforwardly. In particular, the limiting form of A(Q) can be computed, 
as the function Q(x) is allowed to tend towards a constant value, leading to a solution 
even for that singular limit. 

Consider now the general form for the spin-glass free energy. From (1 1) and (25) 
we obtain 

where Q ,  = F(1) = A(Q,) , and l idxQ(x)  = F ( 0 )  = A(Qo) (with Q, and Qo being the 
values of Q(x) at x = 1 and 0 respectively). Integrating by parts, it is easily checked 
that 
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The full free energy, equation (1 2), can thus be cast into the form 

He,  = H,(Q,,A(Q,)) + H,(Q, ,A(Q,) )  + J d Q  h ( 4 Q ) ) .  (30) 

The lowest-order replica symmetry breaking term was (from the previous sections) 
-U 1 dxQ4(x), which can be rewritten 

Y l  
--U J dQ 7 Q 4  d’ A = -4u~‘dA( + 4uQ3A(Q)lI: - 121.4 s,”’ dQ Q2,4(Q). 

dQ dQ Yo 0 

Thus the perturbed free energy is of the form 

Now we adopt the boundary condition (for zero external field) Qo = 0. In that case all 
contributions to H ,  vanish, and we are left with 

and thus A(Q) satisfies the equation (taking the functional derivative with respect to 
A )  

- 12uQ’ + h’A(Q) = 0. (34) 

With 

A(Q) 1 PJ h(A(Q)) = - - - 
2 22z-/?JA(Q) 

using ( 1  3) we have 

= 0. I 1 (PJ)‘ 
- 12uQ‘+ - - - 

2 2 ( 2 ~  - PJA(Q))’ 

(35) 

Solving the saddlepoint equation (34) for A(Q), we obtain 

22 1 
A(Q) = - + (37) PJ - Ji-3z@ 

from which the allowed solutions for Q(x) are found to be either Q(x) = 0 (imposing the 
condition that the allowed function cannot be a decreasing function of x, on stability 
grounds [3]) or 

This is precisely the solution found in section 5 .  
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7. Discussion 

We have analysed the spherical model from the point of view of understanding what 
happens to the replica symmetric solution when one passes to the limit of Ising 
spins. The stability properties of the replica symmetric solution are investigated in the 
enlarged phase space of matrices parametrised U la Parisi. A more complete analysis 
would ideally dispense with this ansatz for replica symmetry breaking, however in the 
context of the replica method, we were unable to find a generalisation that would give 
reasonable results in the n + 0 limit?. Within the limitations of the ansatz, however, the 
results obtained show that replica symmetry is broken when the spin lengths on each 
site are favoured to have a non-zero value. Requiring this effectively implies turning up 
the frustration in the system, as the most frustrated spins in the system will no longer 
set themselves automatically to zero. The mass of the symmetry breaking fluctuations 
depends on the spin length fluctuations, and is proportional to the fourth cumulant of 
the spin length distribution. 
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Appendix 

The calculation of the second variational derivative of Le, is given here. Equation (15) 
gives this functional of Q(x) up to quartic terms in Q, (without the added perturbation 
uQ4 ,which can be easily included). Differentiating this with respect to Q(x) and then 
Q(y) leads to 

We wish to evaluate this quantity below the transition temperature, where Q(x) # 0. 
The form of Q(x) is determined, of course, by the saddlepoint condition, obtained upon 
differentiating (15) with respect to Q(x). One obtains thus 

(pJ ’22)2 2 - + (E) *xQ(x )  - ( $)3 [3xQ(x) l’ Q + i (11 Q)I] = 0. (A2) 

t However, a recent analysis that is not based on replicas has yielded a non-trivial Parisi-like Q(x) in the 
mean spherical model (131. 
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The saddlepoint condition requires, in fact, that the 'diagonal' term in the equation 
(Al)  above vanish. The second term, when evaluated for the special case that Q(x) = Q ,  
reduces to 

Substituting the saddlepoint value for Q (as obtained for the truncated action close to 
the transition) gives the result in the text, equation (18). 
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